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Abstract—An analysis is performed to study the vortex instability of laminar boundary-layer flow in
natural convection over a horizontal flat plate with variable surface temperature, T, {x)— T, = Ax". The
analysis is based on the linear non-parallel flow model in which the steady main flow is treated as two-
dimensional and account is taken of the streamwise dependence of the disturbance amplitude functions.
Neutral stability curves as well as critical Grashof numbers and critical wave numbers are presented for
Prandtl numbers of 0.7 < Pr < 100, over a range of the exponent values » from —1/3 to 1.0. For a given
Prandt! number, the flow is found to become more stable to the vortex mode of instability as the value of
the exponent n increases. However, fluids with a larger Prandtl number are found to be more susceptible
to the instability than fluids with a lower Prandtl number. Results from the present non-parallel flow
analysis are compared with available results from the parallel flow analyses and experiments. The streamwise
variation of the disturbances is found to stabilize the flow.

INTRODUCTION

THE INSTABILITY of natural convection flow over
inclined, upward-facing heated surfaces has been
analyzed rather extensively (see, e¢.g. refs. [1-14]).
From the experimental work of Lloyd and Sparrow
[2] on natural convection flow in water over inclined
heated plates, it was found that for inclination angles
larger than 17° (relative to the vertical), the instability
is characterized by the longitudinal vortex mode,
whereas for inclination angles less than 14° the insta-
bility is characterized by the wave mode. In the range
between 14° and 17° the two modes of instability
were found to coexist. Their work has led to many
analytical studies on the vortex instability for such a
flow configuration.

In almost all of the analytical studies [3-6, 10, 11],
a linear parallel flow model is employed, in which
the disturbances are assumed to be invariable in the
streamwise direction. This approximate analysis has
provided critical Grashof numbers that are two to
three orders of magnitude lower than those of exper-
imental values. There is evidence from recent studies
on vortex instability of forced convection flow {15-
17] to indicate that the non-parallel flow analysis will
yield more realistic predictions, when compared with
experimental data, than those from the parallel flow
analysis. This has motivated the present study.

In this study, the vortex instability of natural con-
vection flow over a horizontal, upward-facing heated
plate is analyzed by employing the non-parallel flow
model in which account is taken of the streamwise
variation of the disturbances. The surface temperature

of the plate is nonuniform and varies as T,(x) =
T, +Ax". In the analysis, the disturbance quantities
are properly scaled and the resulting partial differen-
tial equations for the disturbance amplitude functions,
along with the boundary conditions, are converted
into an eigenvalue problem which is solved numeri-
cally by an efficient finite-difference method [18] in
conjunction with Miiller’s shooting procedure. Neutral
stability curves as well as critical Grashof numbers
and the corresponding critical wave numbers are
presented for fluids with Prandtl numbers of
Pr=0.7, 7, and 100 over a range of the exponent
values, —1/3 £ n < 1. The present results are also
compared with previous results based on the parallel
flow model and with available experimental data.

ANALYSIS

The main flow and thermal fields

As the first step in the analysis, attention is directed
to the main flow and temperature fields. Consider a
horizontal flat plate with its heated surface facing
upward in a quiescent fluid at temperature 7,,. The
physical coordinates are chosen such that x is mea-
sured from the leading edge of the plate and y is
measured normal to the plate. The surface tem-
perature of the plate varies as T,(x) = T, +4x"
where 4 and the exponent n are real constants. Under
the assumption of constant fluid properties and the
use of the Boussinesq approximation, the main flow
and thermal fields are governed by the following sys-
tem of equations [19]:
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@ dimensionless wave number of
disturbance, aX ~%°
D partial derivative with respect to #
f reduced stream function,
Y (x, y)/[5v(Gr./5)"?]

g gravitational acceleration

Gr. local Grashof number,

- gﬁ[Tw(x)_Tx]XB/v:

Gr.  modified local Grashof number,
gBq,x* kv’

Gr;  Grashof number based on L,

gﬂ[Tw(L) - TL]L3/v2

k thermal conductivity

L characteristic length

n exponent in the power-law variation of
the wall temperature

Nu, local Nusselt number

4 disturbance pressure

P mainflow pressure

Pr Prandtl number

qw local surface heat flux

t dimensionless amplitude function of
temperature disturbance

t disturbance temperature

T mainflow temperature

u, v, w dimensionless amplitude functions of
velocity disturbances in the x-. y-, z-
directions, respectively

u, v, w  streamwise, normal, and spanwise

components of disturbance velocity
U, V streamwise and normal velocity
components of mainflow in the x-, y-
directions, respectively
streamwise, normal, and spanwise
coordinates
X, Y, Z dimensionless streamwise, normal,
and spanwise coordinates, defined,
respectively, as x/L, y/(eL), and z/(eL).

Xz

NOMENCLATURE

Greek symbols
o dimensionless wave number of
disturbances, 2n/4
a modified dimensionless wave number of
disturbances corresponding to
modified local Grashof number,
{(6/5)""[-0(0)] "*}a
B volumetric coefficient of thermal
expansion
e dimensionless parameter, (Gr,/5)~ "
n similarity variable. (y/x)(Gr./5)"*
0 dimensionless temperature,
(T=T )T (x)-T,]
K thermal diffusivity
y3 dimensionless wavelength
U dynamic viscosity
v kinematic viscosity
p density
Ty local wall shear stress
Y stream function.
Superscripts
+ dimensionless disturbance quantity
— scale quantity defined by equation
(20
* critical condition or dimensionless
mainflow quantity
B resultant quantity.
Subscripts
o dimensionless amplitude function
w condition at wall
0 condition at free stream.

[ @3 7=+ D)

+ % I:(Z—n)i10+(4n+2) JH/ 0 dn:l =0 (D

0"+ (n+3)Pr f0'~5n Pr 0 =0 @)
S©0) =f(0) =f'(0) =0(po) =0, 6(0)=1 (3)
where thc similarity variable #(x,y), the reduced

stream function f(#) and the dimensionless tem-
perature 6(»n) are defined, respectively, as

n = (¥/x)(Gr./5)'"
Sy = ¥(x,»)/[59(Gr./5) ']
O = (T—=T,)/[T.(x)~T,] 4

with Gr, = gB[T,(x)—T,]x*/v* denoting the local
Grashof number. In equations (1)—(3) the primes
stand for differentiation with respect to # and Pr is
the Prandtl number. Other notations are as defined in
the Nomenclature.

Equations (1)—(3) were solved by an efficient finite-
difference method [18] in conjunction with the cubic
spline interpolation scheme to provide the main flow
quantities that are needed in the instability cal-
culations and to provide other physical quantities,
such as the local Nusselt number Nu, and the local
wall shear stress 7,,. In terms of the dimensionless
variables, the last two quantities can be expressed,
respectively, by
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Nux(er/S)V V5= _9/(0)

T (X*5uv)(Gr/5) % = £"(0). &)

Formulation of the stability problem

In the stability analysis, the linear non-parallel-flow
stability theory is employed. In experiments {1, 2] the
vortex rolls have been found to be unchanging with
time and periodic in the spanwise direction. Therefore,
the disturbance quantities for velocity components ',
', w', pressure p’ and temperature ¢’ are assumed to
be a function of (x, y, =), independent of time. These
disturbance quantities are superimposed on the
steady, two-dimensional main flow quantities U, V,
W =0, P, and T to obtain the following resultant
quantities U, V, W, P, and T~

U(x,y,2) = U(x,p) +u'(x, y,2)

P(x,y,2) = V{x, ) +0'(x, 3, 2)

W(x,y.2) = w(x,3,2)

B(x.p,2) = P(x,y)+p'(x,7.2)

T(x, y.2) = T(x, ) + 1 (x, 3, 2). (6)

Thus, the disturbance quantities are no longer con-
sidered to bte independent of the streamwise coor-
dinate x, as was done in previous studies. The result-
ant quantities given by equation (6) satisfy the
continuity equation, Navier—Stokes equations, and
energy equation for an incompressible, three-dimen-
sional steady fluid flow. Substituting equation (6) into
these equations, subtracting the two-dimensional
main flow, and linearizing the disturbance quantities,
one can arrive at the following disturbance equations :

ouw ot ow
Ty ta =0 @
U aw BU a1 ,
u—a—;+U—a?+va—y+V6‘———;—a‘“+Vvu 8)
o ey
Y ox Ox dy oy
1 op’ 2 ,
= _55;+VV v+gBt (9
ow’ ow’ lép
YtV T T r 0
0T or oT ar 2
6+U6+6+6— KVt (1)

where V? = §%/6x? 4 0/8y? +8?/0z° is the Laplacian
operator.

Since the disturbances are confined within the
boundary layer of the main flow, the so-called bottling
effect by Haaland and Sparrow {4], the disturbance
equations will first be recast into the length scale of
the main flow [12, 13]; that is
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X Y=y

X=7 oL’

zZ
and Z=—  (12)

where ¢ = (Gr./5)" "% and Gr, = gB[T.(L)—T.]L*/
v? is the Grashof number based on the character-
istic length L(x). If L = x, then Y = p and Gr, = Gr,.

Other main flow quantities are scaled as
Ue’L Vel

U* = , V=, =
v v

T-T,
[Tw (.’C) - Toc]

(13

where U*, V*, and 6 and their derivatives with respect
to X and Y are of the order of 1. Similarly, the
disturbance quantities can be scaled as

7.2 22 i
u'e“L v'e L we L
u+ = R N w+ = s
v v v
Fa3F2 4
e’ L t
L 4 A e = (14)
1234 {Tw(x) - Tx]
where u*, »*, w*, p*, and ¢ and their derivatives

with respect to X and Y are of the order of &.
In terms of the above dimensionless variables,
equations (7)—(11) become

AP
e aal;k”w*aat; aaI:J“V*?Y
RN

il

It is noted here that the term (v*/g)dU*/0Y in
equation (16), the term 5t* /e in equation (17), and
the term (v /£)08/¢Y in equation (19) are larger than
the other terms in the corresponding equations by at
least an order of (1/¢). This means that the (X, Y, Z)
variables as defined in equation (12) are not the
appropriate length scales for the disturbances. Thus,
by rescaling the coordinates for the disturbance quan-
tities and the disturbance pressure in the form
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(X, Y,Zp")=X.Y,Z,p )e "? 20
one arrives at
dut  dvt  ow’t
et re i = 21
tex tar taz O b
oU* out ¢ out
+ [ER § £ i o ”V*—:
wloay TETUT e eyt v
Y A A A A
S TE ey T e Tapr Tam 29
V* ovt ov* vt
2+ 2t + (2372 bt
sut Ly TeTUTap e ey F a7
opt 0%t oWt %t .
= — S — = 2
vt i tam tam o @
ow™ awt op™
gl e L
EUT Ty HeTV Sy oz
La7wt o atwt 9wt
TS Ty Tz Y
ort a0 ot
+ VEF £ DOTIRETPE St 2%
gu 6X+8 U 0/‘-,+l 6Y+£ F3%
_ ! 282t++62t+ o (25)
| & ek Tarr T a2 |

Since the terms edu*/oX, e20p/6X, e u*/6X>,
£20%" 10X, 20w /0X?, and £0%t*/0X? in equa-
tions (21)—(25) are smaller than the rest of the terms in
their respective equations, these terms can be omitted.
The omission of these lowest order terms in the dis-
turbance equations is consistent with the level of
approximation of the main flow. With the above-
mentioned terms deleted and by making use of equa-
tion (20), the disturbance equations are reduced to

vt ant
vtz =0 (26)
oU* cu* cu*
n x4 15+
u X +U X +(Gr /5o 3G
+V*5u+_62u+ E‘Qu*r 27
ay ~ ey "ozt
B A LR
(Gr./5) u 2% +U ax +u 3y +V 3%
At 2+ N2+
- - %JFG—;—J(%? +5(Gr/5) St (28)
ow™ ow™ opt  otwr OPwt
* *7 L F .
Uax YV ey 2z Tavr T oz 9
00 ort 00
+ v P s, + 99
u 6X+U 6X+(GrL/5) 0TSy
ort 1| 9%t
* 0
VoY Pr|:6Y2+522:|' (30)
Note that the main flow quantities, such as

U*, cU*[0X, OU*[0Y, V*, 0V*/oX, 0V*/dY, 00/0X,
and 06/0Y can be expressed in terms of f(x). 0(n)
and their n derivatives. For example. U* =
SX'f), V*= XT3 f () =241 ()], and 26/
&Y = X0 (n).

Next, the pressure terms in equations (28) and (29)
are eliminated by cross differentiation and subtrac-
tion. The resulting equation is then differentiated with
respect to Z once and the substitution dw™/0Z =
—@dvt/AY from the continuity equation is employed
to remove terms involving the function w* and its
derivatives. This sequence of operations will yield
three equations for the disturbance quantities u™*,
v*, and ¢*. For the non-parallel flow model con-
sidered here, these quantities are expressed as

(ll+.,l7+.. t+)

= [u (X, Y). 0, (X, Y), t,(X, Y)]lexp 1zZ) (31)

where « is the dimensionless azimuthal wave number
of the disturbances. Thus, the longitudinal vortex rolls
are taken to be periodic in the spanwise Z-direction,
with the amplitude functions depending on both X
and Y.

Substituting equation (31) into equation (27), the
combined form of equations (28) and (29) as
described above, and equation (30), and letting

W =a XY, u=u,, v=u, t=tX" (32)

one obtains the following system of partial differential
equations for the disturbance amplitude functions u,
v,and ¢:

ou

D2%u+a* Du+atu+atv =5fX-

3¥ (33)

D*r+b* D30+ b% D+ b* Do+ b

"t a 2 " 6
+b3u+ bt = 51X 3. (D*) +5/"X 5 (Dv)

o
— 247 —_
Sa’f X&X 34)
ot
D +d*Di+d¥t+diu+div = 5Prf’X5X (35)
along with boundary conditions
u=vr=Dv=¢r=0atn=0and (36)

where
at=3f-2nf", a}=2nf"—f —0o’

at = ~5"(Gr,/5)'"”

b = 3f—2nf", b% = 5f'—2a%—2nf"

bY = 2f"—3a’f+ 20", b% = at+2anf" —olf”

b% = a*(Gr,/S) " Gf —nf = 2nf")
bt = —5a%(Gr /5"

d¥=3Prf—2Prnf’, d¥= Prf —o’

dt=1Pryt, df= —Pro'(Gr/5)'"*. (37)
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In equations (33)—(36), D’ stands for the jth partial
derivative with respect to 5. Boundary conditions (36)
arise from the fact that the disturbances vanish at the
wall and in the free stream. The condition Dv =0
results from the continuity equation (26) along with
w = 0 at n = 0 and co. For the case of weak X depen-
dence, 6/0X « 8/én and the terms on the right-hand
side of equations (33)—(35) can be deleted. The result-
ing equations along with boundary conditions (36)
then provide a system of equations that closely
resemble those for the case of the parallel flow model
in which the amplitude functions u, v, and ¢ depend
only on the Y or # coordinate.

Since equations (33)—(35) are partial differential
equations, the boundary conditions given by equation
(36) are not sufficient if the X derivative of u, v, and
t are not to be set arbitrarily equal to zero. To define
the problem completely, one needs to specify the
initial conditions for u, v, and ¢ at an upstream
location X = X,. However, for the problem con-
sidered here, the terms involving X ¢/0X can be related
to n 8/dn by the coordinate transformation

0 dm 20

With this, equations (33)—(35) reduce to ‘ordinary
differential equations’ as follows:
D?u+a, Duta,u+a,p =0
D% +b, Dv+b, D?v+b; Do
+bo+bsut+bst=0 (40)
(41)

Equations (39)-(41) along with boundary conditions
(36), represent the mathematical system for the insta-
bility problem. In these equations

(39

D%t +d, Dt+d,t+dsu+dow =0.

ay=at+2nf, a,=a% a;=a}
by =b¥+2nf", by =bi+2nf", by =bt-2a"nf"
b,=0b% bs=>0% bs=>bt
d =d¥+2Pryf’, d,=d}
dy =d¥, d,=df. (42)

The system of coupled differential equations, equa-
tions (39)-(41), along with boundary conditions (36),
constitutes an eigenvalue problem of the form

E(a,Gr,: Pr,n) = 0. (43)

In determining the neutral stability curves for given
values of the exponent n and the Prandtl number Pr,
the value of Grashof number, Gr,, satisfying equation
(43) is sought as the eigenvalue for a prescribed value
of the wave number «.

NUMERICAL METHOD OF SOLUTIONS

The system of equations for the main flow and
thermal fields, equations (1)—(3), was solved by a finite-

difference scheme in conjunction with a cubic spline
interpolation procedure similar to, but modified from
that described in ref. [18] to provide the main flow
quantities f, /7, f”, 6, and & that are needed in the
stability computation and in the determination of the
local Nusselt number and the local wall shear stress.
The stability problem, consisting of equations (39)—
(41) and (36), was solved by a finite-difference scheme
along with Miiller’s shooting method. The solution
method parallels that described in ref. {18] and to
conserve space it is not repeated here. It suffices to
mention some of its highlights. Equations (2) and (41)
will become stiff when the Prandtl number is very
large. To solve stiff differential equations by the finite-
difference method, an upwind scheme or its equivalent
is required. In the present study, a finite-difference
method based on a weighting function scheme [18]
was used. This numerical method enables the scheme
to shift automatically from the central difference algo-
rithm to the upwind-difference algorithm, and vice
versa. Furthermore, to proceed with the numerical
calculation of the stability problem, the boundary
conditions at n = 5, need to be approximated by the
asymptotic solutions of equations (39)—(41) at 4 = 5.,
(i.e. at the edge of the boundary layer). Since
f'=f"=8=80 =0 atn=n,, the asymptotic solu-
tions for u, v, and t at # = n,. can be obtained as

U, =exp(—mn,), u =u3;=u,;=0
vy = eXp (_a”rx‘)’ U, = CXp (—mr’x)

vy =exp (—r,), 04 =N, exp(—mn,)

ty=exp(—rq,), =t =1t;=0 (44)
where
r={—CPr+[(C Pr)*+4a*]"2}]2
m={—C+[C*+4a%]"?}/2 (45)

with C = —3f.
At any # location, the solutions for u, v, and ¢ are

u(n) = Kyuy (1) + Kyuz(n) + Kyus(n) + K (n)
v(n) = Ko () + Ky0,(1) + K305(1) + Kyv4(n)
t(n) = Kit,(n) + Kyt,(n) + Kst3(n) + Kat4(n)

where K|, K,, K, and K, are constants.

With a preassigned value of n, the main flow solu-
tion is first obtained for a fixed Prandtl number, Pr.
Next, with the wave number « specified and a guessed
value of the local Grashof number Gr, as the eigen-
value, the finite-difference form of equations (39)—
(41) and (36) is numerically solved from n =0 to
., ending with the asymptotic solutions for u, v,
and ¢ at n = n,,. The guessed eigenvalue Gr, is then
corrected by Miiller’s shooting method until the
boundary conditions at the wall (n = 0) are satisfied
within a certain specified tolerance. This yields a con-
verged Gr, value as the eigenvalue for given values of
n, Pr,and a.

After some experiments with the numerical solu-

(46)
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F16. 1. The effect of # on neutral stability curves for Pr = 0.7.

10°
=g -
n=3/4
n=1/2
n=1/3
Gr;
X \ e
10° v
\Y
n=1/4
n=0
no-1/4
Pre7 Nm—1/3
10’
0.5 1 1.5 2

194

F1G. 2. The effect of # on neutral stability curves for Pr=T7.

tions, a step size of Ay = 0.005 and a value of 7, = 10
were found to be sufficient for both the main flow and
stability calculations for Pr = 7 and 100. However, a
step size of An = 0.005 and a value of 5, = 20 were
needed for Pr=0.7 to provide accurate numerical
results for both. It is also worth noting from the
numerical experiments that a smaller step size in Ay
is found to be more important than a larger value of
... This is especially true when the wave number « is
small.

RESULTS AND DISCUSSION

To determine the stability and instability domains
and the critical Grashof number (i.e. the minimum
Grashof numbers for the incipiency of the vortex
instability), neutral stability curves (i.e. the Grashof
number vs wave number curves) were obtained. The
neutral stability curves for different values of the
exponent n, ranging from —1/3 to 1, are plotted in
Figs. 1-3 separately for Prandtl numbers Pr of 0.7, 7,
and 100. It can be seen from these figures that the flow
becomes less susceptible to the vortex instability as the
value of exponent n increases. Representative neutral
stability curves for n= —1/3, 0 (the uniform wall
temperature, UWT, case), and 1/3 (the uniform sur-
face heat flux, UHF, case) are compared in Fig. 4 for
Pr=0.7, 7, and 100. It shows that the instability
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10°
Gn, A
X
10°t
A
nei/4
n=0
Pr=100 ne—1/4
n=-1/3
10°
0.8 1.2 1.8 2.4 E

10° -

r=4/3 (UHF) E
n=0 (UWT}

F1G. 4. The effect of Pr on the neutral stability curves for
n=—1{3, {UWT), and 1/3(UHF).

is enhanced as Pr increases. The critical Grashof
numbers and the corresponding critical wave num-
bers. along with the local Nusselt number
Nu (Gr./5)~ """ = —#(0) and the local shear stress
T, (X3 Suv}{(Gr,/5)~*° = f"(0), for different values of
nand Pr are listed in Table 1.

Figure 5 shows the critical Grashof number and the
critical wave number as a function of the exponent n
for different Prandtl numbers. An inspection of Table
1 and Fig. 5 reveals that for a given value of the
exponent #n, the critical Grashof number decreases
with an increase in the Prandtl number, Pr. However,
for a given Prandtl number, the critical Grashof num-
bers for n > O are larger than that for the case of n = 0
(the UWT case), but are smaller when n < 0. This
trend can also be observed in Figs. 1-3, which implies
that the flow will become less susceptible to the vortex
instability as the value of » increases. This is to be
expected, because when n = 0 there is a step jump in
the temperature difference (7, — 7.} = A at x = O for
all x, whereas for n > 0 the wall temperature starts
with T, = T, at x = 0 and increases with x, and for
n < 0 it starts with T, - o0 at x = 0 and decreases
with x. Thus, for n < 0 a larger jump in (7, —7T,)
occurs at a smaller x than for # = 0. This contributes
to an earlier onset of the instability and hence a smaller
critical Grashof number. This same trend was also
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Table 1. Critical Grashof number, critical wave number, local Nusselt number and local wall shear stress

Pr=07 Pr=7 Pr =100
noGrr e =80 O G =00 ) G ax —00) [0
1 11648 0.62066 0.82703 0.60159 117.70 0.90566 1.39955 0.23950 13.470  1.6635 2.45011 0.08387
3/4 10755 0.63690 0.76234 0.58415 100.99 0.91200 1.29837 0.23426 11.502 1.6641 2.27896 0.08240
/2 989.56 0.65379 0.68840 0.56483  85.252 0.91887 1.18280 0.22884  9.6599 1.6654 2.08333 0.08099
1/3 933.99 0.66405 0.63186 0.55074  75.264 0.92484 1.09432 0.22525 8.4967 1.6675 1.93332 0.08015
1/4 907.65 0.67004 0.60063 0.54331  70.411 0.92839 1.04535 0.22351 79327 1.6691 1.85018 0.07979
0 834.52 0.68803 0.48933 0.51945  56.326 0.94275 0.86956 0.21904  6.2972 1.6775 1.55059 0.07924
—1/4  780.19 0.70939 0.32818 0.49431  42.616 096876 0.60739 0.21819  4.6925 1.6978 1.09815 0.08076
—~1/3 77192 0.72046 0.25067 048657  37.951 0.98318 0.47532 0.22026 4.1372 1.7111 0.86632 0.08251
105 . takes into account the streamwise dependence of the
) o disturbances, predicts a more stable flow condition
10 X 1 than that predicted by the parallel flow model and
GP* . G e Pr=g7 hence the results are in better agreement with available
X1y experimental data. However, the difference in the criti-
102 Pr=7 cal Grashof numbers between the prediction and the
& ] experiment is still very large. It should be noted that
1 Pr=100 s . . .
ey the present prediction is based on the linear theory in
124 . which the disturbance quantities are assumed to be
| & i \ infinitesimally small. In real situations, natural dis-
5 Pre=g7 Pr=7 Pr=100 turbances in boundary layer flow need to be amplified

.4 -0.2 4] o.2 0.4 0.8 o.8 1

n

F1G. 5. Critical values of Grashof number and wave number
for Pr=0.7,7,100,and ~1/3<n< 1.

observed in the work of refs. [12, 13]. One can also
see from Fig. 5 that for a given value of the exponent
n, the critical wave number increases with increasing
Prandtl number, Pr. This trend is similar to that found
in earlier analytical [4, 5] and experimental [9] studies.
Figure 5 also shows that in the linear-logarithm scale
the critical Grashof number increases almost linearly
with an increase in the exponent value »n, whereas the
critical wave number decreases linearly with n.

In order to compare directly the critical Grashof
number and the critical wave number from the present
analysis based on the non-parallel flow model with
those from the analysis by the parallel flow model for
the UHF case reported in ref. [11], one needs to define
an equivalent Grashof number and an equivalent
wave number. The case of n = 1/3 corresponds to the
UHF case. It can be shown that

Gr, = SVS[—0'(0)]~ ¥°GrY*® (47
o= (5/6)"°[—6"(0)]"*a (48)

where Gr, = gBq.x*/kv? and & are, respectively, the
modified Grashof number and wave number for the
UHF case, In Table 2 a comparison of the critical
values is made between the present non-parallel flow
model and the parallel flow model and with available
experimental data [14]. From the table one can see
that the critical Grashof numbers from the non-par-
allel flow model are much larger than those from the
parallel flow model for both Pr = 0.7 and 7. That is,
the more rigorous non-parallel flow analysis, which

before they can be detected. Thus, to remedy the dis-
crepancy in the results between the linear theory and
experiments, further analytical studies are needed.
They may include a linear analysis by considering also
the time dependence of the amplitude functions or a
non-linear analysis, which are being attempted by the
authors.

Because no experiments on the vortex instability of
natural convection flow over a horizontal flat plate
are available for the power-law wall temperature vari-
ation except for the UWT case (n = 0), the results
from the present analysis for a# 5 0 cannot be verified
directly with experimental results.

CONCLUSION

In this paper vortex instability of laminar boundary
layer flow in natural convection over a horizontal
flat plate has been analyzed for non-isothermal wall
temperatures by employing the linear non-parallel
flow theory. Critical Grashof numbers are presented
for Pr=10.7, 7, and 100 over a range of the exponent
values n from —1/3 to 1. The major findings from the
present study are: (1) for a given value of Pranddl
number Pr, the critical Grashof number increases with
increasing value of the exponent n, (2) for a given
value of the exponent n, the critical Grashof number
decreases with increasing Prandtl number, and (3) the
non-parallel flow analysis provides a larger critical
Grashof number than the parallel flow analysis, thus
bringing the prediction closer to available exper-
imental data. However, the discrepancy between
results from the theory and experiments is still large.

Acknowledgemeni—Part of the numerical results reported in
this paper was obtained by using a Cray X-MP Super-



Parallel flow
UHF [11]
14,185
0.76712

75.264
0.92484

Non-parallel
flown=1/3

Pr=17

Parallel flow
UWT [10]
0.825

0

56.326
0.94275

Non-parallel
flow n

Parallel flow
UHEF [11]
230.72
0.53288

933.99
0.66405

Non-parallel
flown = 1/3

Pr=0.7
Experiments UWT
Cheng and Kim [14]
6.35~ 11.37 x10°

0.33204 ~ 0.42970

UWT [10}
340
0.583

Table 2. A comparison of Gr¥ and o* between non-parallel flow model and parallel flow model and with available experimental data
Parallel flow

0

Non-parallel
flow n
834.52
0.68803

%

Gr:

x

a*

H. R. LEg et al.

computer through the facility of the National Center for
Supercomputing Applications (NCSA) at the University of
linois.
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INSTABILITE DE TOURBILLON NON PARALLELE POUR LA CONVECTION
NATURELLE SUR UN PLAN BHORIZONTAL NON ISOTHERME

Résumé—On étudie I'instabilité de tourbillon d’un écoulement de couche limite laminaire en convection
naturelle sur un plan horizontal a température variant selon T, (x)—T, = 4Ax". L’analyse est basée sur
le modéle linéaire d’écoulement non paralléle dans lequel I’écoulement moyen permanent est traité en
bidimensionnel et ou est prise en compte la dépendance, dans le sens de I’écoulement, des fonctions
d’amplitude de perturbation. Les courbes de stabilité neutre, les nombres de Grashof critiques et les
nombres d’onde critiques sont présentés pour des nombres de Prandtl 0,7 < Pr < 100 et pour des valeurs
de n allant de —1/3 a 1,0. Pour un nombre de Prandtl donné, I’écoulement devient plus stable lorsque »n
augmente. Néanmoins, les fluides a grand nombre de Prandtl sont plus instables que ceux a faible nombre
de Prandtl. Les résultats de cette analyse sont comparés avec les résultats connus des analyses d’écoulement
paralléle et des expériences. La variation des perturbations dans le sens de I’écoulement semble stabiliser
I"écoulement.

INSTABILITAT DER NATURLICHEN KONVEKTIONSSTROMUNG AN EINER NICHT-
ISOTHERMEN WAAGERECHTEN EBENEN PLATTE MIT NICHT-PARALLELEN WIRBELN

Zusammenfassung—Die Wirbelinstabilitit einer laminaren Grenzschichtstromung bei der natiirlichen Kon-
vektion an einer waagerechten ebenen Platte mit variabler Oberflichentemperatur 7,(x)— 7, = Ax” wird
theoretisch untersucht. Grundlage dafiir bietet das lineare nicht-parallele Stromungsmodell, bei dem die
stationdre Hauptstromung zweidimensional betrachtet wird. Dabei wird die Verdnderung der Ampli-
tutenfunktion der Stérung in Stromungsrichtung beriicksichtigt. Die Kurven neutraler Stabilitit wie auch
die kritische Grashof-Zahl und die kritische Wellenzahl werden fiir Prandtl-Zahlen 0,7 < Pr < 100 bei
Exponenten—1/3 < n < 1,0 prisentiert. Es zeigt sich, da} die Strdmung bei einer vorgegebenen Prandtl-
Zahl stabiler wird (im Sinne der Wirbelinstabilitidt), wenn der Exponent n ansteigt. Fluide mit groBer
Prandtl-Zahl erweisen sich jedoch als empfindlicher im Hinblick auf die Instabilitit als Fluide mit kleiner
Prandtl-Zahl. Die Ergebnisse der vorgelegten Untersuchung mit nicht-paralleler Strémung werden mit
verfiigbaren berechneten und gemessenen Ergebnissen fiir parallele Stromung verglichen. Die Variation
der Stérungen in Stromungsrichtung erweist sich als stabilisierend fiir die Strdmung.

HEYCTOAYUBOCTbh ECTECTBEHHOKOHBEKTHUBHOI'O TEYEHUS B YCJIOBUSIX
HEMAPAJUIEJIBHOCTU BUXPEN HAJl HEU30TEPMHUUYECKON I'OPU3OHTAJIbHOH
TJIOCKON THIACTUHON

AHBOTAINS—AHAJIH3APYETCH BHXpEBas HEYCTOMYMBOCTD JIAMHHAPHOTO TEYEHMA B MOrpPaHHYHOM CJioe
MPH eCTeCTBEHHOH KOHBEKIHA HA/l TOPH3OHTAJILHON ILUIOCKOH NJIACTHHONR C H3IMEHMIOMmeHCA TeMnepaTy-
poit nosepxuoctH T, (x) — T, = Ax". AHaJIM3 OCHOBaH Ha JNHHEHHOH MOAeIH HenapasleAbHBIX IOTOKOB,
B KOTOPOH OCHOBHOE CTAaIHOHAPHOE TeYCHHE CYMTACTCH NBYMEPHBIM H YYHTHIBACTCS HEOMHOPOMHAsA Mo
NOTOKY 3aBACHAMOCTb aMIUTHTYAHBIX (pyHximii Bo3yweHHi. [IprBoasTca HelTPaIbHHE XPHBHIE YCTOHYH-
BOCTH, a TaKike KpHTHYeckHe yHcia Ipacroda u xpATHYECKHEe BOJIHOBLIE YHC/A IS HHTEPBAIa 3HAYEHHMH
qucina [Ipasarns 0,7 < Pr < 100 B aAuana3oHe 3Ha4eHni nokasaTess creneHa n oT — 1/3 no 1. Haitneso,
4TO NpH 331aHHOM 3Ha4eHWH 4Acna [IpaHATIA YCTOAYABOCTL TEYCHHSN OTHOCHTENILHO BAXPEBBIX BO3MY-
LU MOBHILAETCSA NO MEpe YBENHYEHAA 3HAaYeHMA MoKasaTens crenesd n. KpoMe Toro oGHapyxeHo,
49TO YCTOWYHBOCTb TEYCHMS XHAKOCTeHl C BHICOKHMH 4ucnamu [Ipanarins Huke, YeM XuAxocTel ¢
Hu3kuMH vHciiaMH [Ipanarns. PesynsTaTH MPOBEAEHHOTO aHAJM3Aa HEMAPAUIC/IBHLIX OTOKOB CPaBHH-
BAIOTCH C HM3BECTHBIMHM pe3ylbTaTaMH aHAJK3a NAapAJUICTLHBIX NOTOKOB H 3KCIICPHMEHTAJILHBIMH
nanHuMi. HafineHo, 9T0 HEOAHOPOAHOCTL BO3MYIIEHHH B IOTOKE OKa3hIBAET HA HETO CTAOHIH3HpYIO-
ee AcicTBHE.
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