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Abstract-An analysis is performed to study the vortex instability of laminar boundary-layer flow in 
natural convection over a horizontal flat plate with variable surface temperature, T,(X) - r, = AX”. The 
analysis is based on the linear non-parallel Aow model in which the steady main Row is treated as two- 
dimens~o~ai and account is taken of the streamwise dependence of the disturbance amplitude functions. 
Neutral stability curves as well as critical Grashof numbers and critical wave numbers are presented for 
Prandtl numbers of 0.7 < Pr C 100, over a range of the exponent values n from - l/3 to 1 .O. For a given 
Prandtl number, the flow is found to become more stable to the vortex mode of instability as the value of 
the exponent R increases. However, fluids with a larger Prandti number are found to be more susceptible 
to the instability than fluids with a lower Prandtl number. Results from the present non-parallel flow 
analysis are compared with available results from the parallel flow analyses and experiments. The streamwise 

variation of the disturbances is found to stabilize the flow. 

INTRODUCTION 

THE INSTABILITY of natural convection flow over 
inclined, upward-facing heated surfaces has been 
analyzed rather extensively (see, e.g. refs. [l-14]). 
From the experimental work of Lloyd and Sparrow 
[2] on natural convection flow in water over inclined 
heated plates, it was found that for inclination angles 
larger than 17” (relative to the vertical), the instability 
is characterized by the longitudinal vortex mode, 
whereas for inclination angles less than 14” the insta- 
bility is characterized by the wave mode. In the range 
between 14” and 17” the two modes of instability 
were found to coexist. Their work has led to many 
analytical studies on the vortex instability for such a 
flow configuration. 

In almost all of the analytical studies I3-6, 10, 111, 
a linear parallel flow model is employed, in which 
the disturbances are assumed to be invariable in the 
streamwise direction. This approximate analysis has 
provided criticai Grashof numbers that are two to 
three orders of magnitude lower than those of exper- 
imental values. There is evidence from recent studies 
on vortex instability of forced convection flow [15- 
171 to indicate that the non-parallel flow analysis will 
yield more realistic predictions, when compared with 
experimental data, than those from the parallel flow 
analysis. This has motivated the present study. 

In this study, the vortex instability of natural con- 
vection fiow over a horizontal, upward-facing heated 
plate is analyzed by employing the non-parallel flow 
model in which account is taken of the streamwise 
variation of the disturbances. The surface temperature 

of the plate is nonuniform and varies as T,.,(x) = 

T, + Ax”. In the analysis, the disturbance quantities 
are properly scaled and the resulting partial differen- 
tial equations for the distu~an~ amplitude functions, 
along with the boundary conditions, are converted 
into an eigenvalue problem which is solved numeri- 
cally by an efficient finite-difference method [lg] in 
conjunction with Miiller’s shooting procedure. Neutral 
stability curves as well as eriticai Grashof numbers 
and the corresponding critical wave numbers arc 
presented for fluids with Prandtl numbers of 
Pr = 0.7, 7, and 100 over a range of the exponent 
values, - l/3 < n < 1. The present results are also 
compared with previous results based on the parallel 
flow model and with available experimental data. 

ANALYSIS 

The mainflow and therrna~.~e~~ 

As the first step in the analysis, attention is directed 
to the main flow and tem~rature fields. Consider a 
horizontal flat plate with its heated surface facing 
upward in a quiescent fluid at temperature T,. The 
physical coordinates are chosen such that x is mea- 
sured from the leading edge of the plate and y is 
measured normal to the plate. The surface tem- 
perature of the plate varies as T,(x) = T, + Ax” 
where A and the exponent n are real constants. Under 
the assumption of constant fluid properties and the 
use of the Boussinesq approximation, the main flow 
and thermal fields are governed by the following sys- 
tem of equations [ 191 : 
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NOMENCLATURE 

dimensionless wave number of 
disturbance. ctX_ ‘.‘5 

partial derivative with respect to ye 
reduced stream function, 

$(.L y)l]5v(W5) ‘? 
gravitational acceleration 
local Grashof number, 
gb[T,(.u) - T,]x’/v’ 

modified local Grashof number, 
g,8qU.a4/kv’ 
Grashof number based on L, 

gB[Tw(L) - T,IL31v’ 
thermal conductivity 
characteristic length 
exponent in the power-law variation of 
the wall temperature 
local Nusselt number 
disturbance pressure 
mainflow pressure 
Prandtl number 
local surface heat flux 
dimensionless amplitude function of 
temperature disturbance 
disturbance temperature 
mainflow temperature 

U, c, w dimensionless amplitude functions of 
velocity disturbances in the x-. y-, z- 
directions, respectively 

U’, 2”. \I” streamwise, normal, and spanwise 
components of disturbance velocity 

U, I’ streamwise and normal velocity 
components of mainflow in the X-. J- 

directions, respectively 
.Y. )‘, z streamwise, normal, and spanwise 

coordinates 
A’, Y, Z dimensionless streamwise, normal, 

and spanwise coordinates, defined, 
respectively, as x/L, y/(&L), and z/(&L). 

Greek symbols 

dimensionless wave number of 
disturbances, 271/i 
modified dimensionless wave number of 

disturbances corresponding to 
modified local Grashof number, 
{(6/5)‘!h[-t3’(0)]-‘1”Ja 
volumetric coefficient of thermal 

expansion 
dimensionless parameter, (Gr,,/5) “’ 
similarity variable, (y/x)(Gr,/S) “’ 
dimensionless temperature, 

(T- T,)IL”&) - T,l 
thermal diffusivity 

dimensionless wavelength 
dynamic viscosity 
kinematic viscosity 

density 
local wall shear stress 
stream function. 

Superscripts 

+ dimensionless disturbance quantity 

scale quantity defined by equation 

(20) 
* critical condition or dimensionless 

mainflow quantity 
resultant quantity. 

Subscripts 
0 dimensionless amplitude function 
W condition at wall 
cc) condition at free stream. 

.f”‘+(n+3)fS”-(2n+l)(f’)’ % 
s 1 8dr) =0 (I) 
‘I 

H”+(n+3)PrfB’-55n Prf’O = 0 (2) 

f(0) =.f’(O) =f’(co) = H(p) = 0, O(0) = 1 (3) 

where the similarity variable v(.Y, y), the reduced 
stream function f(q) and the dimensionless tem- 
perature 0(q) are defined, respectively, as 

v = (.~/-4(Gr,/5)“~ 

J(V) = ti(x.~9/]5v(Gr,/5) “jl 
Q(v) = (T- T,)/[T,Cd- T,l (4) 

with Gr., = gj[T,,,(x) - Tw]x3/v2 denoting the local 

Grashof number. In equations (l)-(3) the primes 
stand for differentiation with respect to q and Pr is 
the Prandtl number. Other notations are as defined in 
the Nomenclature. 

Equations (l)-(3) were solved by an efficient finite- 
difference method [18] in conjunction with the cubic 
spline interpolation scheme to provide the main flow 
quantities that are needed in the instability cal- 
culations and to provide other physical quantities, 
such as the local Nusselt number Nu, and the local 
wall shear stress 7,. In terms of the dimensionless 
variables, the last two quantities can be expressed, 
respectively, by 
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Nu,(Gr,/S)- “’ = -B'(O) 

?,(x2/5pv)(Gr,/5)-3’s =f”(O). (5) 

Formulation of the stability problem 
In the stability analysis, the linear non-parallel-flow 

stability theory is employed. In experiments [ 1, 21 the 
vortex roils have been found to be unchanging with 
time and periodic in the spanwise direction. Therefore, 
the disturbance quantities for velocity components u‘, 
L”, w’, pressure p’ and temperature t’ are assumed to 
be a function of (x, I’, z), independent of time. These 
disturbance quantities are superimposed on the 
steady, two-dimensional main flow quantities U, V, 
W = 0, P, and T to obtain the following resultant 
quantities 0, ?, @, p, and F: 

0(x, y, z) = Ufx, y) + u’(x, y, 2) 

Q(x, y, z) = V(x, y) + d(x, y, z) 

fP(x, y, 2) = w/(x, y, z) 

li(x, I: z) = P(x, y) +p’(x, I’. z) 
1 
T(x, y. z) = T&y) + t’(x, y, z). (6) 

Thus, the disturbance quantities are no longer con- 
sidered to be independent of the streamwise coor- 
dinate x, as was done in previous studies. The result- 
ant quantities given by equation (6) satisfy the 
continuity equation, Navier-Stokes equations, and 
energy equation for an incompressible, three-dimen- 
sional steady fluid flow. Substituting equation (6) into 
these equations, subtracting the two-dimensional 
main flow, and linearizing the disturbance quantities, 
one can arrive at the following disturbance equations : 

(7) 

A’=;, Y=s, and Z=$ (12) 

where E = (GrL/5)-‘15 and Gr, = gfl[T,,,(L) - T,]L3/ 
v2 is the Grashof number based on the character- 
istic length t(x). If L = x, then Y = q and Gr, = Gr,. 
Other main flow quantities are scaled as 

UE2L 
u+=--- 

V&L T-T, 

’ P ‘*=? @=[T,(x)-r,] 

(13) 

where U*, V*, and Band their derivatives with respect 
to X and Y are of the order of 1. Similarly, the 
disturbance quantities can be scaled as 

u+ - U’E2L 
_p 

v ’ 
v+ = 

P’&*L W’2 L 
-9 w+ - _p 

V v ’ 

P’E3L2 I 
p+ =- 

’ F” ‘+ = [T&-TX,] 
(14) 

where u+, u+, wg+, p+, and t+ and their derivatives 
with respect to X and Y are of the order of E. 

In terms of the above dimensionless variables, 
equations (7)-( 11) become 

au+ aa+ aw+ 
&ax+-ar”az=O 

u+ air* 1 au* 
x+U*g+;v+ =+P!$ 

(15) 

= ap+ ,a%+ ah+ a%+ ___ ~ -E-~~+E aFy+ aY2 + aZz (16) 

av* EUf~+v*!!&++I:icr+v*g 

_ aP+ _ aY+&2!&+?C+!X 5 + 
ay2 az* +Et (17) 

au ati au ad I apj 
d-j; -I- lJ% -t-v’- + v- = - - -.- +vV2u’ 

ay ay p dx 
(8) 

aw+ aw+ ap+ 
v*ax+V*ar=-az 

av ad av au’ 
u’~+u~+z”~+vov ,a++ a%+ h+ 

i-8 TF+ ayz + azz (18) 

where V2 = ~2/~x2+a2jay2+a2/&2 is the Laplacian 
operator. 

Since the disturbances are confined within the 
boundary layer of the main flow, the so-called bottling 
effect by Haaland and Sparrow [4], the disturbance 
equations will first be recast into the length scale of 
the main flow [I 2, 131; that is 

1 =pr &-~+--T+--_r. 
[ 

2 a2tf azt+ a2tf 
ax ay- az 1 (19) 

It is noted here that the term (v+/E)aU*/aY in 
equation (16), the term 5t+/~ in equation (17), and 
the term (v+/e)~W/~ Y in equation (19) are larger than 
the other terms in the corresponding equations by at 
least an order of (l/~). This means that the (X, Y, Z) 
variables as defined in equation (12) are not the 
appropriate length scales for the disturbances. Thus, 
by resealing the coordinates for the disturbance quan- 
tities and the disturbance pressure in the form 
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- - _ 
(X, Y, z,p+) = (X. Y,Z,Pf)E ’ 2 

one arrives at 

(20) 

ae 
&ld+ FX 

_ +E’i2u*c!g +2:+ ;y+&‘::V*?& 

=A G$+$+$ (25) 
[ .I 

Since the terms siiU+/dX. s’@+/SX. a’d’u+/dX’, 
sza20f/aX2, s’a%+/aX’, and 2a’t+/W in equa- 

tions (21)-(25) are smaller than the rest of the terms in 
their respective equations, these terms can be omitted. 
The omission of these lowest order terms in the dis- 
turbance equations is consistent with the level of 
approximation of the main flow. With the above- 

mentioned terms deleted and by making use of equa- 
tion (20), the disturbance equations are reduced to 

r?r+ s,c+ 
.(?Y + E = 0 (26) 

Ll+ 
au* ax + u* gi + (Gr,_/5) ‘/5Lt+ g 

all+ ah+ 8’U+ 
+v*ay=py2+mEm (27) 

(Gr,_,5)~l:‘u+~+u*~+c+~+v*~~ 

ap+ azr+ (72r,+ 
= - iiy + ~:y?- + F +5(GrL/5)“5tf (28) 

a%+ ~*?!c+v*?& _!K+F+ ?‘2w+ 
x- 

(2% 

u+ E + U* g + (GrL/5) “5v+ Bf 

+v*?&gg+q (30) 

Note that the main flow quantities, such as 

u*, au*jax, au*pr, v*, av*jax, av*jar. au/ax, 
and irejaY can be expressed in terms of f’(a). O(q) 
and their q derivatives. For example. I/* = 
5X”‘/“(q), V* = -x~z’5[3f(g)-22qf’(a)], and C%/ 
r’Y = x- 2 50’(?/). 

Next, the pressure terms in equations (28) and (29) 

are eliminated by cross differentiation and subtrac- 
tion. The resulting equation is then differentiated with 
respect to Z once and the substitution &v+/dZ = 
-du+/?Y from the continuity equation is employed 
to remove terms involving the function M.+ and its 
derivatives. This sequence of operations will yield 
three equations for the disturbance quantities u+, 

P+. and t+. For the non-parallel flow model con- 

sidered here, these quantities are expressed as 

(U+.P+. t+) 

= [24,(X, Y). VAX. Y). t,(X. Y)] exp (i,Z) (31) 

where a is the dimensionless azimuthal wave number 

of the disturbances. Thus, the longitudinal vortex rolls 
are taken to be periodic in the spanwise Z-direction, 
with the amplitude functions depending on both X 
and Y. 

Substituting equation (31) into equation (27), the 
combined form of equations (28) and (29) as 

described above, and equation (30), and letting 

& = a2x4’5, 
u = u,, I_’ = (,I,, t zz t,X’.‘5 (32) 

one obtains the following system of partial differential 

equations for the disturbance amplitude functions U, 
v, and t : 

D%+at Du+afu+afo = 51.X& (33) 

D40+b: D%+b; D’a+bf Dr+b:o 

+b:u+b;t = 51’X&D2r)+5,fX&(Da) 

- sa2yx& (34) 

D’t+d: Dt+d:t+d$+d$u = 5Pr f’X;i (35) 

along with boundary conditions 

u=~=Da=t=Oatr~=Oandcc (36) 

where 

a: = 3f - 2qf,. *‘: = 2fl-,f”-$ 

a: = - 5f”(Gr,/5) l/5 

b: = 3f-2qf”, h; = 5f’-2a’-2$” 

b: = 2f’“-3azf+2$l?f’, b: = t14+2&f”-C(2j’~ 

b: = $x’(Gr,/5)-‘~‘(3f--qf’-2~~f”) 

bX = -5u2(Gr_y/5)“5 

d: = 3Prf-2Pr qf’, d: = Pry--u2 

d: = :Pr r&l’, d$ = - Pr B’(Gr,/S) “5. (37) 
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In equations (33)-(36), Dj stands for the jth partial 
derivative with respect to 1. Boundary conditions (36) 
arise from the fact that the disturbances vanish at the 
wall and in the free stream. The condition Do = 0 
results from the continuity equation (26) along with 
w = 0 at q = 0 and co. For the case of weak Xdepen- 
dence, a/ax << a/all and the terms on the right-hand 
side of equations (33)-(35) can be deleted. The result- 
ing equations along with boundary conditions (36) 
then provide a system of equations that closely 
resemble those for the case of the parallel flow model 
in which the amplitude functions U, u, and t depend 
only on the Y or q coordinate. 

Since equations (33)-(35) are partial differential 
equations, the boundary conditions given by equation 
(36) are not sufficient if the X derivative of U, u, and 
t are not to be set arbitrarily equal to zero. To define 
the problem completely, one needs to specify the 
initial conditions for U, L’, and t at an upstream 
location X = X,. However, for the problem con- 
sidered here, the terms involving Xa/axcan be related 
to q ajar? by the coordinate transformation 

a aaq 2a 
Xax=Xallax= -p&. (38) 

With this, equations (33)-(35) reduce to ‘ordinary 
differential equations’ as follows : 

D2u+a, Du+a2u+a3u = 0 (39) 

D40+b, D3u+b2 D20+b3 Dv 

+b4v+b,u+b,t = 0 (40) 

D2t+d, Dt+d2f+d3u+dg = 0. (41) 

Equations (39)-(41) along with boundary conditions 
(36), represent the mathematical system for the insta- 
bility problem. In these equations 

a, = a:+2rf, a2 = a:, a3 = a: 

b, = bf+2qf’, b2 = b:+2qf”, b3 = b;-2u2rlf 

b, = b:, bS = b:, b6 = b: 

d, = @+2Pr rf, d2 = d$ 

d3 = d:, d4 = d:. (42) 

The system of coupled differential equations, equa- 
tions (39)-(41), along with boundary conditions (36), 
constitutes an eigenvalue problem of the form 

E(a, Gr, ; Pr, n) = 0. (43) 

In determining the neutral stability curves for given 
values of the exponent n and the Prandtl number Pr, 
the value of Grashof number, Gr,, satisfying equation 
(43) is sought as the eigenvalue for a prescribed value 
of the wave number c(. 

NUMERICAL METHOD OF SOLUTIONS 

The system of equations for the main flow and 
thermal fields, equations (l)-(3), was solved by a finite- 

difference scheme in conjunction with a cubic spline 
interpolation procedure similar to, but modified from 
that described in ref. [18] to provide the main flow 
quantities f, f’, f”, 0, and 0’ that are needed in the 
stability computation and in the determination of the 
local Nusselt number and the local wall shear stress. 
The stability problem, consisting of equations (39)- 
(41) and (36), was solved by a finite-difference scheme 
along with Miiller’s shooting method. The solution 
method parallels that described in ref. [18] and to 
conserve space it is not repeated here. It suffices to 
mention some of its highlights. Equations (2) and (41) 
will become stiff when the Prandtl number is very 
large. To solve stiff differential equations by the finite- 
difference method, an upwind scheme or its equivalent 
is required. In the present study, a finite-difference 
method based on a weighting function scheme [18] 
was used. This numerical method enables the scheme 
to shift automatically from the central difference algo- 
rithm to the upwind-difference algorithm, and vice 
versa. Furthermore, to proceed with the numerical 
calculation of the stability problem, the boundary 
conditions at q = q, need to be approximated by the 
asymptotic solutions of equations (39)-(41) at ‘1 = q7. 
(i.e. at the edge of the boundary layer). Since 
f’ =f” = fI = 8’ = 0 at q = q,, the asymptotic solu- 
tions for u, v, and t at q = qX can be obtained as 

uZ = exp (-WV,,), U, = u3 = uq = 0 

vI = exp (-a~,), vZ = exp (-mq,) 

L’) = exp (-r?=). ~1~ = 1, exp (-mr?.*) 

t3 = exp (6v,), t, = t, = t4 = 0 (44 

where 

r = {-C Pr+[(C Pr)Z+4a2]“2}/2 

m = {-C+[C2+4c?]“2}/2 (45) 

withC= -3J 
At any q location, the solutions for u, v, and t are 

u(q) = K,“,(rl)+K2u2(q)+K3u3(?)+K,u,(rl) 

4~) = K,v,(rl)+K2~2(~)+K3u3(rl)+K,u,(~) 

t(v) = K,t,(r)+Klt2(~)+K3f3(~)+K4f4(~) (46) 

where K,, K,, K,, and K, are constants. 
With a preassigned value of n, the main flow solu- 

tion is first obtained for a fixed Prandtl number, Pr. 
Next, with the wave number c1 specified and a guessed 
value of the local Grashof number Gr, as the eigen- 
value, the finite-difference form of equations (39)- 
(41) and (36) is numerically solved from q = 0 to 

V ending with the asymptotic solutions for U, 11, 
a% t at 4 = q*. The guessed eigenvalue Gr, is then 
corrected by Miiller’s shooting method until the 
boundary conditions at the wall (q = 0) are satisfied 
within a certain specified tolerance. This yields a con- 
verged Gr, value as the eigenvalue for given values of 
n, Pr, and a. 

After some experiments with the numerical solu- 
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FIG. 1. The effect of n on neutral stability curves for Pr = 0.7 

loa . . . . . . . . . . I . I 0.5 1 f.5 2 

cy 

FIG. 2. The effect of n on neutral stability curves for Pr = 7. 

tions, a step size of AT = 0.005 and a value of qZ = 10 
were found to be suiIicient for both the main flow and 
stability calculations for Pr = 7 and 100. However, a 
step size of Aq = 0.005 and a value of q-,, = 20 were 
needed for Pr = 0.7 to provide accurate numerical 
results for both. It is also worth noting from the 
numerical experiments that a smaller step size in Aq 
is found to be more important than a larger value of 
q_*. This is especially true when the wave number CI is 
smail. 

RESULTS AND OlSCUSSlON 

To determine the stability and instability domains 
and the critical Grashof number (i.e. the minimum 
Grashof numbers for the incipiency of the vortex 
instability), neutral stability curves (i.e. the Grashof 
near vs wave number curves) were obtained. The 
neutral stability curves for different values of the 
exponent IZ, ranging from - l/3 to 1, are plotted in 
Figs. 1-3 separately for Prandtl numbers Pr of 0.7. 7, 
and 100. It can be seen from these figures that the flow 
becomes less susceptible to the vortex instability as the 
value of exponent n increases. Representative neutral 
stability curves for n = -l/3, 0 (the uniform wall 
temperature, UWT, case), and l/3 (the uniform sur- 
face heat flux, UHF, case) are compared in Fig. 4 for 
Pr = 0.7, 7, and 100. It shows that the instabiIity 

Pa-=100 

12 . . . . . . 1 . 
0..3 1.2 1.8 2.4 3 

a 
FIG. 3. The effect of n on neutral stability curves for Pr = 100. 

-----n-o (UWTI 
-----n--1/3 

i09 

Grx 
fO’ 

12 
0.5 i 2.5 e 2.5 3 

a 

FIG. 4. The erect of Pr on the neutral stability curves for 
n = - 1/3,O(UWT), and I/3(UHF). 

is enhanced as Pr increases. The critical Grashof 
numbers and the corresponding critical wave num- 
bers. along with the local Nusselt number 
Nu,y(Gr,/5)p ‘I5 = -o’(O) and the local shear stress 

r,(.~2/5~v)(Gr.Y/5)- 3!5 =f”(O), for different values of 
n and Pr are listed in Table 1. 

Figure 5 shows the critical Grashof number and the 
critical wave number as a function of the exponent n 
for different Prandtl numbers. An inspection of Table 
1 and Fig. 5 reveals that for a given value of the 
exponent n, the critical Grashof number decreases 
with an increase in the Prandtl number, Pr. However, 
for a given Prandtl number, the critical Grashof num- 
bers for n > 0 are larger than that for the case of n = 0 
(the UWT case), but are smaller when n < 0. This 
trend can also be observed in Figs. l-3, which implies 
that the flow will become less susceptible to the vortex 
instability as the value of n increases. This is to be 
expected, because when n = 0 there is a step jump in 
the temperature difference (T, - T,) = A at x = 0 for 
all X, whereas for n > 0 the wall temperature starts 
with T, = T,, at .Y = 0 and increases with X, and for 
n < 0 it starts with Tw + m at x = 0 and decreases 
with x. Thus, for FE < 0 a larger jump in (Tw - T,) 

occurs at a smaller .Y than for n = 0. This contributes 
to an earlier onset of the instability and hence a smaller 
critical Grashof number. This same trend was also 
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n 

Table 1. Critical Grashof number, criticai wave number, local Nusselt number and local wall shear stress 

Pr = 0.7 Pr = 1 Pr = 100 
-~ --. -..__ 

Gr: Gr: a* -fqO) f’(0) 

314 
112 
l/3 
l/4 
0 

--l/4 
-l/3 

1164.8 0.62066 0.82703 0.60159 117.70 0.90566 1.39955 0.23950 13.470 1.6635 2.4501 I 0.08387 
1075.5 0.63690 0.76234 0.58415 100.99 0.9l200 I.29837 0.23426 II.502 1.6641 2.27896 0.08240 
989.56 0.65379 0.68840 0.56483 85.252 0.91887 1.18280 0.22884 9.6599 1.6654 2.08333 0.08099 
933.99 0.66405 0.63186 0.55074 75.264 0.92484 1.09432 0.22525 8.4967 1.6675 1.93332 0.08015 
907.65 0.67004 0.60063 0.54331 70.411 0.92839 1.04535 0.22351 7.9327 1.6691 1.85018 0.07979 
834.52 0.68803 0.48933 0.51945 56.326 0.94275 0.86956 0.21904 6.2972 1.6775 1.55059 0.07924 
780.19 0.70939 0.32818 0.49431 42.616 0.96876 0.60739 0.21819 4.6925 1.6978 1.098 15 0.08076 
771.92 0.72046 0.25067 0.48657 37.951 0.98318 0.47532 0.22026 4.1372 1.7111 0.86632 0.08251 

Gr?* - 

a* ____ ______ _ 
Pr-0.3 

Pr-7 

Pr-100 

FIG. 5. Critical values of Grashof number and wave number 
forPr=0.7,7.100,and-1/3<n<l. 

observed in the work of refs. [I2, 131. One can also 
see from Fig. 5 that for a given value of the exponent 
n, the critical wave number increases with increasing 
Prandtl number, P r. This trend is similar to that found 
in earlier analytical [4. 51 and experimental [9] studies. 
Figure 5 also shows that in the linear-loga~thm scale 
the critical Grashof number increases almost linearly 
with an increase in the exponent value n, whereas the 
critical wave number decreases linearly with n. 

In order to compare directly the critical Grashof 
number and the critical wave number from the present 
analysis based on the non-parallel flow model with 
those from the analysis by the parallel flow model for 
the UHF case reported in ref. [I I], one needs to define 
an equivalent Grashof number and an equivalent 
wave number. The case of n = l/3 corresponds to the 
UHF case. It can be shown that 

Gr, i= 5’!6[-@‘(0)J-5/6&~6 (47) 

ct = (5/6) ‘I”[ - F(O)] ‘%z (48) 

where crx = g&wx4/kv2 and oi are, respectively, the 
modified Grashof number and wave number for the 
UHF case. In Table 2 a comparison of the critical 
values is made between the present non-parallel flow 
model and the parallel flow model and with available 
experimental data [14]. From the table one can see 
that the critical Grashof numbers from the non-par- 
allel flow model are much larger than those from the 
parallel flow model for both Pr = 0.7 and 7. That is, 
the more rigorous non-parallel flow analysis. which 

takes into account the streamwise dependence of the 
disturbances, predicts a more stable flow condition 
than that predicted by the parallel flow model and 
hence the results are in better agreement with available 
experimental data. However, the difference in the criti- 
cal Grashof numbers between the prediction and the 
experiment is still very large. It should be noted that 
the present prediction is based on the linear theory in 
which the disturbance quantities are assumed to be 
infinitesimally small. In real situations, natural dis- 
turbances in boundary layer flow need to be amplified 
before they can be detected. Thus, to remedy the dis- 
crepancy in the results between the linear theory and 
experiments,. further analytical studies are needed. 
They may include a linear analysis by considering also 
the time dependence of the amplitude functions or a 
non-linear analysis, which are being attempted by the 
authors. 

Because no experiments on the vortex instability of 
natural convection flow over a horizontal flat plate 
are available for the power-law wall temperature vari- 
ation except for the UWT case (n = 0), the results 
from the present analysis for n f 0 cannot be verified 
directly with experimental results. 

CONCLUSION 

In this paper vortex instability of laminar boundary 
layer flow in natural convection over a horizontal 
flat plate has been analyzed for non-isothermal wall 
temperatures by employing the linear non-parallel 
flow theory. Critical Grashof numbers are presented 
for Pr = 0.7,7, and 100 over a range of the exponent 
values n from - l/3 to 1. The major findings from the 
present study are: (1) for a given value of Prandtl 
number Pr, the critical Grashof number increases with 
increasing value of the exponent n, (2) for a given 
value of the exponent n, the critical Grashof number 
decreases with increasing Prandtl number, and (3) the 
non-parallel flow analysis provides a larger critical 
Grashof number than the parallel flow analysis, thus 
bringing the prediction closer to available exper- 
imental data. However, the discrepancy between 
results from the theory and experiments is still large. 
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INSTABILITE DE TOURBILLON NON PARALLELE POUR LA CONVECTION 
NATURELLE SUR UN PLAN HORIZONTAL NON ISOTHERME 

RCum&On &die l’instabilitt de tourbillon d’un Ccoulement de couche limite laminaire en convection 
naturelle sur un plan horizontal a temperature variant selon T,,,(x) - T, = Ax”. L’analyse est basee sur 
le modtle lintaire d’ecoulement non parallele dans lequel l’bcoulement moyen permanent est trait& en 
bidimensionnel et od est prise en compte la dependance, dans le sens de l’ecoulement, des fonctions 
d’amplitude de perturbation. Les courbes de stabilite neutre, les nombres de Grashof critiques et les 
nombres d’onde critiques sont present&s pour des nombres de PrandtlO,7 < Pr < 100 et pour des valeurs 
de n allant de - l/3 a 1 ,O. Pour un nombre de Prandtl don&, l’ecoulement devient plus stable lorsque n 
augmente. Neanmoins. les fluides a grand nombre de Prandtl sont plus instables que ceux a faible nombre 
de Prandtl. Les resultats de cette analyse sont compares avec les rbultats connus des analyses d’ecoulement 
parallele et des experiences. La variation des perturbations dans le sens de l’ecoulement semble stabihser 

l’ecoulement. 

INSTABILITAT DER NATURLICHEN KONVEKTIONSSTRi)MUNG AN EINER NICHT- 
ISOTHERMEN WAAGERECHTEN EBENEN PLATTE MIT NICHT-PARALLELEN WIRBELN 

Zusammenfassung-Die Wirbelinstabilitat einer laminaren Grenzschichtstromung bei der natiirlichen Kon- 
vektion an einer waagerechten ebenen Platte mit variabler Oberfllchentemperatur T,(I) - T, = Ax” wird 
theoretisch untersucht. Grundlage dafiir bietet das lineare nicht-parallele Stromungsmodell, bei dem die 
stationare Hauptstromung zweidimensional betrachtet wird. Dabei wird die Verlnderung der Ampli- 
tutenfunktion der Stijrungin Striimungsrichtung bcriicksichtigt. Die Kurven neutraler Stab&at wie such 
die kritische Grashof-Zahl und die kritische Wellenzahl werden fur Prandtl-Zahlen 0.7 < Pr < 100 bei 
Exponenten- l/3 i n < 1,0 prasentiert. Es zeigt sich. da13 die Striimung bei einer vorgkgebenen Prandtl- 
Zahl stabiler wird (im Sinne der Wirbelinstabilitlt), wenn der Exponent n ansteigt. Fluide mit groger 
Prandtl-Zahl erweisen sich jedoch als empfindlicher im Hinblick auf die Instabilitlt als Fluide mit kleiner 
Prandtl-Zahl. Die Ergebnisse der vorgelegten Untersuchung mit nicht-paralleler Striimung werden mit 
verfiigbaren berechneten und gemessenen Ergebnissen fur parallele Striimung verglichen. Die Variation 

der Storungen in Stramungsrichtung erweist sich als stabilisierend fiir die Striimung. 

HEYCTO$+HiBGCTbECTECTBEHHOKOHBEKTMBHOFOTE~EHHII BYCJIOBHIIX 
HEHAPAJIJIE.JIbHOCTH BHXPEn HAJJ HEHBOTEPMH’JECKOfl I-OPMSOHTAJIbHOti 

ITJIOCKOft I-IJIACTHHOn 

AArianH3HpyeTcn Bwpesas Heycroikiisonb nahmHapHor0 TegeHHn B norpamiwob4 cnoe 
rrprs eorecrnemroii ~orinemrsiss ~89 rop~3o~Tanb~oii nnocrofi n.nacrnHoii c a3rdeHloorueika TeMnepaTy- 
pofi no~epx~cc~~ TAX) - T, = Ax”. AH~JIES OCHOBBH Ha .rnnrefiHoSi Monenn Henapannenwux ~OTOKOB, 

B KoTopofi 0c~0BH0e craoaoHapH0e TePeAae cwraeTcR nBys4epWbIM H ywblBae~ca HeoJmopomian no 
nOTOKy 3aBEiCHM0CTb ahmmfrym $ymr# Bosyueti. lIpaeoan~cn Hema.iTbsiwe rpHebre ycrotima- 
B~H, a TaKxe rparwwsie pacna l+acr* si qiTw4eCLHe Bomionbre mcna LUra mirepBana 3HaqeH& 
%icna HpanJ.rrnn 0,7 C Pr < 100 B mana3oHe saaqetolit no~a3a~e~In cTeneHu n OT - l/3 HO 1. HaftneHo, 

‘iT0 npH 3UWiHOM 3HB’IeHEB %iCJla l-@UUITJEJ yCTO+tEB0CTb Te’teHHS OTHoCETeJlbHO BHXpeBL.lX BO3My- 
wed n0~bn11ae~cr1 no Mepe yneJm¶eHas 3HaqemuI nona3aTeJIn CTenemi n. KpoMe TOGO 06HapFeH0, 
qT0 ycroHw~0crb TeqeHHn ramrocreii c Bbrco~lIMll wscna= IIpawrrnn wxe, qeM xRpr0crefi c 
HH~PIAMB qHcnaw IIP~H~TJM. Pe3ynbTaTbI rrp0BeneHHoro ariamr3a riertapannenbnbrx noroLotr C~~BHH- 

Bai0TCR C H3BecMbIMB pe3ynbTaTahni ari-38 napannenbm noToxoB si 3ucnepm4errTana 

pa~ribrbui. HatieHo, wo He0~opo~0cTb Bo3MyweHEfi B nOTOKe oPa3bmaeT Ha Hero CTa6HJIH3HpyW 
ruee neficrene. 


